nanoXIM HAp powders are micrometric aggregates of hydroxyapatite nanoparticles.
These products are used in the manufacturing of biocompatible bone graft substitutes (e.g. porous granules and scaffolds for bone regeneration) and 3D printed implants.
Due to the similarity between nano-hydroxyapatite and mineralized bone, nanoXIM HAp powders have a high affinity to hard tissues as they form chemical bonds with the host tissue resulting in an improved biological performance.
![]() |
Promotes bone regeneration and vascularization |
![]() |
Osteoconductive and osteostimulative |
![]() |
Enhances osteoblast functions |
![]() |
Biocompatible material |
![]() |
Pure hydroxyapatite |
![]() |
Micron-sized powders |
![]() |
Narrow particle size distribution |
![]() |
Synthetic material |
![]() |
Complies with heavy metals and Ca/P ratio according to ISO 13779 |
nanoXIM•HAp200
nanoXIM•HAp200 is a series of nanostructured synthetic hydroxyapatite powders, manufactured and supplied in two different particle sizes, 5 and 10 μm.
This feature is achieved in the drying process by spray dryer technique where the nanoparticles in liquid phase are dried as spherical aggregates with a high surface area.
Reference | Particle size, d50 (μm) | ![]() |
nanoXIM•HAp202 | 5.0±1.0 | ADD |
nanoXIM•HAp203 | 10.0±2.0 | ADD |
![]() Physical appearance |
![]() SEM of nanoXIM.HAp200 |
![]() Electron crystallography |
nanoXIM•HAp600
nanoXIM•HAp600 is a series of synthetic calcined hydroxyapatite powders composed by micron-sized particles.
These powders are heat-treated to obtain products with a low surface area and high crystallinity.
Reference | Particle size, (μm) |
![]() |
nanoXIM•HAp602 |
d10 : ≤ 5 d50 : ≤ 15 d90 : ≤ 25 |
![]() Physical appearance |
![]() SEM of nanoXIM.HAp602 |
![]() SEM of nanoXIM.HAp602 |
The formation of a stable microvasculature is an essential process to ensure a successful regeneration of bone tissue.
The viability and proliferation of bone cells are essential during bone regeneration. In this study, it was evaluated the viability and proliferation of MG63 cells (osteoblast-like cells) cultured on substrates produced with nanoXIM•HAp202, in comparison with the ones produced with micro HAp.
T.M. Koushik, C.M. Miller, E. Antunes, “Optimisation of two-step sintering parameters to produce bioactive and dense zirconia-hydroxyapatite composite ceramics”, Journal of the European Ceramic Society, 43(5), p. 2222 (2023).
K.K. Moncal, M. Yeo, N. Celik, T.M. Acri, E. Rizk, H. Wee, G.S. Lewis, A.K. Salem, I.T. Ozbolat, “Comparison of in-situ versus ex-situ delivery of polyethylenimine-BMP-2 polyplexes for rat calvarial defect repair via intraoperative bioprinting” Biofabrication, 15, 015011 (2023).
N. Alegrete, S.R. Sousa, T. Padrão, Â. Carvalho, R. Lucas, R.F. Canadas, C. Lavrador, N. Alexandre, F. Gärtner, F.J. Monteiro, M. Gutierres. “Vancomycin-Loaded, Nanohydroxyapatite-Based Scaffold for Osteomyelitis Treatment: In Vivo Rabbit Toxicological Tests and In Vivo Efficacy Tests in a Sheep Model”, Bioengineering, 10(2), p. 206 (2023).
A.C. Costa, P.M. Alves, J.J. Monteiro, C. Salgado, “Interactions between Dental MSCs and Biomimetic Composite Scaffold during Bone Remodeling Followed by In Vivo Real-Time Bioimaging”, International Journal of Molecular Sciences, 24(3), 1827 (2023).
A. Popkov, N. Kononovich, G. Dubinenko, E. Gorbach, A. Shastov, S. Tverdokhlebov, D. Popkov , “Long Bone Defect Filling with Bioactive Degradable 3D-Implant: Experimental Study”, Biomimetics, 8(2), p.138 (2023).
M. Bayart, M. Dubus, S. Charlon, H. Kerdjoudj, N. Baleine, S. Benali, J.-M. Raquez, J. Soulestin, “Pellet-Based Fused Filament Fabrication (FFF)-Derived Process for the Development of Polylactic Acid/Hydroxyapatite Scaffolds Dedicated to Bone Regeneration”, Materials, 15(16), 5615 (2022).
Y. Liu, S. Sebastian, J. Huang, T. Corbascio, J. Engellau, L. Lidgren, M. Tägil, D.B. Raina, “Longitudinal in vivo biodistribution of nano and micro sized hydroxyapatite particles implanted in a bone defect”, Front. Bioeng. Biotechnol. 10:1076320 (2022).
S. Wang, “Development of collagen/hydroxyapatite composites with angiogenic properties” PhD thesis, Faculty of Medicine, Eberhard Karls Universität Tübingen, (2022).
A. Mahfuri, A. Shehada, K. Darwich, R. Saima, “Radiological Comparative Study Between Conventional and Nano Hydroxyapatite With Platelet-Rich Fibrin (PRF) Membranes for Their Effects on Alveolar Bone Density”, Cureus 14(12): e32381 (2022).
Y. Liu, “Hydroxyapatite – A trojan horse in the delivery of apatite-binding cytostatics in bone cancer.” PhD thesis, Department of Clinical Sciences, Lund University, Faculty of Medicine (2022).
K.S. Naik, P.P. Satardekar, J.A. Downs, V.M. Sglavo, “Understanding the flash sintering behavior for hydroxyapatite”. Journal of Materials Research 37, 1030 (2022).
Y. Liu, A. Nadeem, S. Sebastian, M.A. Olsson, S.N. Wai, E. Styring, J. Engellau, H. Isaksson, M. Tägil, L. Lidgren, D.B. Raina, “Bone mineral: A trojan horse for bone cancers. Efficient mitochondria targeted delivery and tumor eradication with nano hydroxyapatite containing doxorubicin”, Materials Today Bio, 14, 100227 (2022).
M.I. Martins, M.A. Rodrigues, M.A. Lopes, J.D. Santos, “Preparation and characterization of customized bone grafting hydroxyapatite models obtained by digital light processing 3D printing”, Journal of Materials Research https://doi.org/10.1557/s43578-021-00481-2 (2022)
H. A.V.M. Esteves, M.I. Martins, P. Soares, M.A. Rodrigues, M.A. Lopes, J.D. Santos, “Additive manufacturing of ceramic alumina/calcium phosphate structures by DLP 3D printing”, Materials Chemistry and Physics, 276, 125417 (2022).
R. Sinha, A. Sanchez, M. Camara-Torres, I.C. Uriszar-Aldaca, A.R. Calore, J. Harings, A. Gambardella, L. Ciccarelli, V. Vanzanella, M. Sisani, M. Scatto, R. Wendelbo, S. Perez, S. Villanueva, A. Matanza, A. Patelli, N. Grizzuti, C. Mota, L. Moroni, “Additive Manufactured Scaffolds for Bone Tissue Engineering: Physical Characterization of Thermoplastic Composites with Functional Fillers” ACS Applied Polymer Materials 3(8), p. 3788 (2021).
T. Uysalman, B.M. Leskeri, M. Sarikanat, L. Altay, Y. Seki, “Production and characterization of thermo-mechanical properties of hydroxyapatite filled polycarbonate composite filaments for FDM printing”, Journal of Additive Manufacturing Technologies, 1(3), 588.
A.I. Kozelskaya, S. Rutkowski, A.S. Gogolev, S.G. Chistyakov, I.B. Krasovsky, A.A. Zheravin, S.I. Tverdokhlebov, “Bioactive coatings on 3D printed titanium implants with a complex internal structure for bone replacement”, Journal of Physics: Conference Series, 2144, 012015 (2021).
F. Zavřel, M. Novák, J. Kroupová, C. Beveridge, F. Štěpánek, G. Ruphuy, “Development of Hot-Melt Extrusion Method to Produce Hydroxyapatite/Polycaprolactone Composite Filaments”, Advanced Engineering Materials, 2100820, (2021).
S. Wang, F. Umrath, W. Cen, S. Reinert, D. Alexander, “Angiogenic Potential of VEGF Mimetic Peptides for the Biofunctionalization of Collagen/Hydroxyapatite Composites. Biomolecules”, 11(10):1538 (2021).
A. Iglesias-Mejuto, C.A. García-González, “3D-printed alginate-hydroxyapatite aerogel scaffolds for bone tissue engineering”, Materials Science and Engineering: C, 131, 112525 (2021).
K.K. Moncal, H. Gudapati, K.P. Godzik, D.N. Heo, Y. Kang, E. Rizk, D.J. Ravnic, H. Wee, D.F. Pepley, V. Ozbolat, G.S. Lewis, J.Z. Moore, R.R. Driskell, T.D. Samson, I.T. Ozbolat, “Intra‐Operative Bioprinting of Hard, Soft, and Hard/Soft Composite Tissues for Craniomaxillofacial Reconstruction”, Advanced Functional Materials, 31, 2010858 (2021).
A. Zainal, A.M. Ishak, “Fracture Toughness of Poly (Methyl Methacrylate)/Hydroxyapatite Denture Base Composite: Effect of Planetary Ball Milling Mixing Time”, Journal of Physical Science, 32(3), p. 103 (2021).
H. Jaber, J. Kónya, T.A. Kovács, “Selective Laser Melting of Ti6Al4V-2%Hydroxyapatite Composites: Manufacturing Behavior and Microstructure Evolution”, Metals, 11(8), 1295 (2021).
M.J.C. Vilela, B.J.A. Colaço, J. Ventura, F.J.M. Monteiro, C.L. Salgado, “Translational Research for Orthopedic Bone Graft Development”, Materials, 14(15), 4130. (2021).
A. Popkov, D. Kulbakin, D. Popkov, E. Gorbach, N. Kononovich, N. Danilenko, K. Stankevich, E. Choynzonov, A. Zheravin, I. Khlusov, L. Bondar, V. Perelmuter, E. Bolbasov, S. Tverdokhlebov, “Solution blow spinning of PLLA/Hydroxyapatite composite scaffolds for bone tissue engineering”, Biomedical Materials, 16(5), 055005 (2021).
T. Padrão, C.C. Coelho, P. Costa, N. Alegrete, S.R. Sousa, F.J. Monteiro, “Combining local antibiotic delivery with heparinized nanohydroxyapatite/collagen bone substitute: a novel strategy for osteomyelitis treatment”, Materials Science & Engineering C, 119, 111329 (2021)
S. Cometa, M.A. Bonifacio, E. Tranquillo, A. Gloria, M. Domingos, E. Giglio, “A 3D Printed Composite Scaffold Loaded with Clodronate to Regenerate Osteoporotic Bone: In Vitro Characterization”, Polymers, 13(1), 150 (2021).
J.M. Aldabib, “Effect of silane coupling agent content on mechanical properties of hydroxyapatite/poly(methyl methacrylate) denture base composite”, Journal of Scientific Perspectives, 5 (1), p. 37 (2021).
A. Kozelskaya, A. Fedotkin, I. Khlusov, L. Litvinova, S. Tverdokhlebov, “Effect of working gas on physicochemical and biological properties of CaP coatings deposited by RFMS”, Biomedical Materials, DOI: 10.1088/1748-605X/abcae3 (2020)
D. Faria, B. Henriques, A.C. Souza, F.S. Silva, O. Carvalho, “Laser-assisted production of HAp-coated zirconia structured surfaces for biomedical applications”, Journal of the Mechanical Behavior of Biomedical Materials, 112, 104049 (2020)
I.M. Pintão, “Development of a bi-functional 3D scaffold composed by glucomannan and biphasic calcium phosphates for bone tissue engineering applications.”, MSc Thesis in Bioengineering, Faculdade de Engenharia and Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (2020).
P. Saravanan , L. Melk, N. Emami, “Mechanical and thermal properties of vitamin E-doped UHMWPE reinforced with hydroxyapatite”, Tribology - Materials, Surfaces & Interfaces, DOI: 10.1080/17515831.2020.1830252 (2020)
C.L. Salgado, C.C. Barrias, F.J. Monteiro, “Clarifying the Tooth-Derived Stem Cells Behavior in a 3D Biomimetic Scaffold for Bone Tissue Engineering Applications”, Front. Bioeng. Biotechnol., 8, 724, doi: 10.3389/fbioe.2020.00724 (2020).
J.M. Aldabib, Z.A.M. Ishak, “Effect of hydroxyapatite filler concentration on mechanical properties of poly (methyl methacrylate) denture base”, SN Appl. Sci. 2, 732 (2020).
L. Schuster, N. Ardjomandi, M. Munz, F. Umrath, C. Klein, F. Rupp, S. Reinert, D. Alexander, “Establishment of Collagen: Hydroxyapatite/BMP-2 Mimetic Peptide Composites”, Materials, 13, 1203 (2020).
M.M. Hasani-Sadrabadi, P. Sarrion, S. Pouraghaei, Y. Chau, S. Ansari, S. Li, T. Aghaloo, A. Moshaverinia, “An engineered cell-laden adhesive hydrogel promotes craniofacial bone tissue regeneration in rats”, Science Translational Medicine 12, issue 534, eaay6853 (2020).
D. Kołbuk, M. Heljak, E. Choińska, O. Urbanek, “Novel 3D Hybrid Nanofiber Scaffolds for Bone Regeneration”, Polymers, 12, 544 (2020).
I. Chiesa, C. De Maria, A. Lapomarda, G.M. Fortunato, F. Montemurro, R. Di Gesu, R.S. Tuan, G. Vozzi, R. Gottardi, “Endothelial cells support osteogenesis in an in vitro vascularized bone model developed by 3D bioprinting”, Biofabrication doi:10.1088/1758-5090/ab6a1d (2020).
J. Barros, L.D.R. Melo, R.A. Silva, M.P. Ferraz, J. Azeredo, V. Pinheiro, B. Colaço, M.H. Fernandes, P.S. Gomes, F.J. Monteiro, “Encapsulated bacteriophages in alginate-nanohydroxyapatite hydrogel as a novel delivery system to prevent orthopedic implant-associated infections.”, Nanomedicine: Nanotechnology, Biology and Medicine, 24, 102145. doi:10.1016/j.nano.2019.102145 (2020).
J. Mesquita-Guimarães, R. Detsch, A.C. Souza, B. Henriques, F.S. Silva, A.R. Boccaccini, O. Carvalho, “Cell adhesion evaluation of laser-sintered HAp and 45S5 bioactive glass coatings on micro-textured zirconia surfaces using MC3T3-E1 osteoblasts-like cells”, Materials Science & Engineering C, doi.org/10.1016/j.msec.2019.110492 (2019).
M.C. Echave, R. Domingues, M. Gomez-Florit, J.L. Pedraz, R.L. Reis, G. Orive, M.E. Gomes, “Biphasic hydrogels integrating mineralized and anisotropic features for interfacial tissue engineering”, ACS Appl. Mater. Interfaces, doi.org/10.1021/acsami.9b17826 (2019).
R.N. Salaie, A. Besinis, H. Le, C. Tredwin, R.D. Handy, “The biocompatibility of silver and hydroxyapatite coatings on titanium dental implants with human primary osteoblast cells”, Materials Science & Engineering C, doi.org/10.1016/j.msec.2019.110210 (2019).
C. Gabriel, L. Grenho, F. Cerqueira, R. Medeiros, A. M. Dias, A. I. Ribeiro, M. F. Proença, M. H. Fernandes, J. C. Sousa, F. J. Monteiro, M. P. Ferraz, “Inhibitory Effect of 5-Aminoimidazole-4-Carbohydrazonamides Derivatives Against Candida spp. Biofilm on Nanohydroxyapatite Substrate”, Mycopathologia, p.1, doi.org/10.1007/s11046-019-00400-4 (2019).
C.L. Salgado, B.I.B. Teixeira, F.J. Monteiro, “Biomimetic Composite Scaffold With Phosphoserine Signaling for Bone Tissue Engineering Application”, Front. Bioeng. Biotechnol., 7, 206, doi:10.3389/fbioe.2019.00206 (2019).
K.K. Moncal, R.S.T. Aydin, M. Abu-Laban, D.N. Heo, E. Rizk, S.M. Tucker, G.S. Lewis, D. Hayes, I.T. Ozbolat, “Collagen-infilled 3D printed scaffolds loaded with miR-148btransfected bone marrow stem cells improve calvarial bone regeneration in rats”, Materials Science & Engineering C, doi:10.1016/j.msec.2019.110128 (2019).
J. Barros, M.P. Ferraz, J. Azeredo, M.H. Fernandes, P.S. Gomes, F.J. Monteiro, “Alginate-nanohydroxyapatite hydrogel system: Optimizing the formulation for enhanced bone regeneration”, Materials Science & Engineering C, https://doi.org/10.1016/j.msec.2019.109985 (2019).
I. Chiesa, G.M. Fortunato, A. Lapomarda, L. Di Pietro, F. Biagini, A. De Acutis, L. Bernazzani, M.R. Tinè, C. De Maria, G. Vozzi, “Ultrasonic mixing chamber as an effective tool for the biofabrication of fully graded scaffolds for interface tissue engineering”, The International Journal of Artificial Organs, https://doi.org/10.1177/0391398819852960 (2019).
A.Y. Fedotkin, E.N. Bolbasov, A.I. Kozelskaya, G. Dubinenko, E.V. Shesterikov, A. Ashrafov, S.I. Tverdokhlebov, “Calcium phosphate coating deposition by radio frequency magnetron sputtering in the various inert gases: The pilot study”, Materials Chemistry and Physics, 235, 121735 (2019)
M.M. Costa, F. Bartolomeu, N. Alves, F.S. Silva, G. Miranda, “Tribological Behavior of Bioactive Multi-Material Structures Targeting Orthopedic Applications”, Journal of the Mechanical Behavior of Biomedical Materials, doi.org/10.1016/j.jmbbm.2019.02.028 (2019).
D. Faria, J.M. Pires, A.R. Boccaccini, O. Carvalho, F.S. Silva, J. Mesquita-Guimarães, “Development of novel zirconia implant's materials gradated design with improved bioactive surface”, Journal of the Mechanical Behavior of Biomedical Materials, doi.org/10.1016/j.jmbbm.2019.02.022 (2019).
G. Miranda, F. Sousa, M.M. Costa, F. Bartolomeu, F.S. Silva, O. Carvalho, “Surface design using laser technology for Ti6Al4V-hydroxyapatite implants” Optics and Laser Technology, 109, p. 488 (2019).
C.B. Soo, T. Kang, B.M. Wu, “Bone-targeting therapeutic conjugated and methods of making and using the same” US Patent 20190275160, The Regents of the University of California (2019).
M. Buciumeanu, D. Faria, J. Mesquita-Guimarães, F.S. Silva, “Tribological characterization of bioactive zirconia composite layers on zirconia structures”, Ceramics International, DOI: 10.1016/j.ceramint.2018.07.094 (2018)
G.M. Penarrieta-Juanito, M. Cruz, M. Costa, G. Miranda, J. Marques, R.S. Magini, A. Mata, J.C.M. Souza, J. Caramês, F.S. Silva, “A novel gradated zirconia implant material embedding bioactive ceramics: Osteoblast behavior and physicochemical assessment”, Materialia, 1, p. 3 (2018).
K.K. Moncal, D.N. Heo, K.P. Godzik, D.M. Sosnoski, O.D. Mrowczynski, E. Rizk, V. Ozbolat, S.M. Tucker, E.M. Gerhard, M. Dey, G.S. Lewis, J. Yang, I.T. Ozbolat, “3D printing of poly(e-caprolactone)/poly(D,L-lactide-co-glycolide)/hydroxyapatite composite constructs for bone tissue engineering”, Journal of Materials Research 1-15. doi:10.1557/jmr.2018.111 (2018)
M. Ribeiro, M.H. Fernandes, M.M. Beppu, F.J. Monteiro, M.P. Ferraz, “Silk fibroin/nanohydroxyapatite hydrogels for promoted bioactivity and osteoblastic proliferation and differentiation of human bone marrow stromal cells” Materials Science & Engineering C 89, p. 336 (2018).
O. Carvalho, F. Sousa, S. Madeira, F.S. Silva, G. Miranda, “HAp-functionalized zirconia surfaces via hybrid laser process for dental applications” Optics and Laser Technology, 106, p. 157 (2018).
R.B.P. Miranda, L. Grenho, A. Carvalho, M.H. Fernandes, F.J. Monteiro, P.F. Cesar, “Micropatterned Silica Films with Nanohydroxyapatite for Y-TZP Implants”, Journal of Dental Research, doi.org/10.1177/0022034518765762 (2018).
M. Domingos, A. Gloria, J. Coelho, P. Bartolo, J. Ciurana, “Three-dimensional printed bone scaffolds: The role of nano/micro-hydroxyapatite particles on the adhesion and differentiation of human mesenchymal stem cells.” Proc IMechE Part H: J Engineering in Medicine, 231(6), p. 555 (2017).
D. Faria, C.S. Abreu, M. Buciumeanu, N. Dourado, O. Carvalho, F.S. Silva, G. Miranda, “Ti6Al4V laser surface preparation and functionalization using hydroxyapatite for biomedical applications”, J Biomed Mater Res Part B; DOI: 10.1002/jbm.b.33964 (2017).
T.A. Dantas, M.M. Costa, G. Miranda, F.S. Silva, C.S. Abreu, J.R. Gomes, “Effect of HAp and b-TCP incorporation on the tribological response of Ti6Al4V biocomposites for implant parts.” J Biomed Mater Res Part B; DOI: 10.1002/jbm.b.33908 (2017).
S. Cruz-Neves, N. Ribeiro, I. Graça, C. Jerónimo, S. R. Sousa, F. J. Monteiro, "Behavior of prostate cancer cells in a nanohydroxyapatite/collagen bone scaffold”, Journal of Biomedical Materials Research Part A, 105(7), p. 2035 (2017).
W. Xiaopeng, K. Fantao, H. Biqing, C. Yuyong, “Electrochemical corrosion and bioactivity of Ti-NbSn-hydroxyapatite composites fabricated by pulse current activated sintering”, Journal of the Mechanical Behavior of Biomedical Materials (2017).
T.A. Dantas, C.S. Abreu, M.M. Costa, G. Miranda, F.S. Silva, N. Dourado, J.R. Gomes, “Bioactive materials driven primary stability on titanium biocomposites.” Materials Science and Engineering: C, 77(1), p. 1104 (2017).
A. Besinis, S. D. Hadi, H. R. Le, C. Tredwin, R. D. Handy, “Antibacterial activity and biofilm inhibition by surface modified titanium alloy medical implants following application of silver, titanium dioxide and hydroxyapatite nanocoatings”, Nanotoxicology, DOI: 10.1080/17435390.2017.1299890 (2017).
M. Ribeiro, M. P. Ferraz, F. J. Monteiro, M. H. Fernandes, M. M. Beppu, D. Mantione, H. Sardon, “Antibacterial silk fibroin/nanohydroxyapatite hydrogels with silver and gold nanoparticles for bone regeneration”, Nanotechnology, Biology and Medicine, 13, p. 231 (2017).
Z. Li, B.C. Thompson, Z. Dong, K.A. Kho, “Optical and biological properties of transparent nanocrystalline hydroxyapatite obtained through spark plasma sintering”, Materials Science and Engineering C 69, p. 956 (2016).
G. Iviglia, C. Cassinelli, D. Bollati, F. Baino, E. Torre, M. Morra, C. Vitale-Brovarone, “Engineered porous scaffolds for periprosthetic infection prevention”, Materials Science and Engineering C 68, p. 701 (2016).
M. Buciumeanu, A. Araujo, O. Carvalho, G. Miranda, J.C.M. Souza, F.S. Silva, B. Henriques, “Study of the tribocorrosion behaviour of Ti6Al4V – HA biocomposites” Tribology International, 107, p. 77 (2016).
S. Pistone, M. Rykke, G. Smistad, M. Hiorth, “Polysaccharide-coated liposomal formulations for dental targeting” International Journal of Pharmaceutics, 516, p. 106 (2016).
A. Sezinando, M.L. Serrano, V.M. Pérez, R.A.G. Muñoz, L. Ceballos, J. Perdigão, “Chemical Adhesion of Polyalkenoate-based Adhesives to Hydroxyapatite”, The Journal of Adhesive Dentistry, 18(3), p. 257 (2016).
J. Barros, L. Grenho, S. Fontenente, C.M. Manuel, O.C. Nunes, L.F. Melo, F.J. Monteiro and M.P. Ferraz, “S. aureus and E. coli dual-species biofilms on nanohydroxyapatite loaded with CHX or ZnO nanoparticles”, Journal of Biomedical Materials Research, Part A, 105A, p. 491 (2016).
G. Iviglia, C. Cassinelli, E. Torre, F. Baino, M. Morra, C. Vitale-Brovarone, “Novel bioceramic-reinforced hydrogel for alveolar bone regeneration” Acta Biomaterialia 44, p. 97 (2016).
N. Ribeiro, P. Costa-Pinheiro, R. Henrique, M. Gomez-Lazaro, M.P. Pereira, A.A.P. Mansur, H.S. Mansur, C. Jerónimo, S.R. Sousa, F.J. Monteiro, “Comprehensive Analysis of Secreted Protein, Acidic and Rich in Cysteine in Prostate Carcinogenesis: Development of a 3D Nanostructured Bone-Like Model” Journal of Biomedical Nanotechnology, 12(8), p. 1667 (2016)
G. Miranda, A. Araújo, F. Bartolomeu, M. Buciumeanu, O. Carvalho, J.C.M. Souza, F.S. Silva, B. Henriques, “Design of Ti6Al4V-HA composites produced by hot pressing for biomedical applications” Materials and Design 108, p. 488 (2016).
W. K. Yeung, I. V. Sukhorukova, D. V. Shtansky, E. A. Levashov, I. Y. Zhitnyak, N. A. Gloushankova, P. V. Kiryukhantsev-Korneev, M. I. Petrzhik, A. Matthews, A. Yerokhin, “Characteristics and in vitro response of thin hydroxyapatite–titania films produced by plasma electrolytic oxidation of Ti alloys in electrolytes with particle additions”, The Royal Society of Chemistry Advances, 6, p. 12688 (2016).
C. L. Salgado, L. Grenho, M. H. Fernandes, B. J. Colaço, F.J. Monteiro, “Biodegradation, biocompatibility, and osteoconduction evaluation of collagen-nanohydroxyapatite cryogels for bone tissue regeneration”, Journal of Biomedical Materials Research A, 104(1), p. 57 (2016).
G. Iviglia, “Design, development and characterization of novel biomaterials for periodontal tissue engineering.” PhD thesis in Biomedical Engineering, Politecnico di Torino (2016).
D. Bollati, M. Morra, C. Cassinelli, S.M. Lupi, R.R. Baena, “In Vitro Cytokine Expression and In Vivo Healing and Inflammatory Response to a Collagen-Coated Synthetic Bone Filler”, BioMed Research International, https://dx.doi.org/10.1155/2016/6427681 (2016).
F.J. Monteiro, S.R. Sousa, C.C. Coelho, N. Alegrete, “Composition for local and controlled release of drugs and methods thereof”, WO 2015162561A1.
L. Grenho, C. L. Salgado, M. H. Fernandes, F.J. Monteiro, M.P. Ferraz, “Antibacterial activity and biocompatibility of three-dimensional nanostructured porous granules of hydroxyapatite and zinc oxide nanoparticles—an in vitro and in vivo study”, Nanotechnology, 26(31), p. XXX (2015)
J. Barros, L. Grenho, M. H. Fernandes, C. M. Manuel, L.F. Melo, O.C. Nunes, F.J. Monteiro, M.P. Ferraz, “Anti-sessile bacterial and cytocompatibility properties of CHX-loaded nanohydroxyapatite”, Colloids and Surfaces B: Biointerfaces, 130, p. 305-314 (2015).
C.C. Coelho, S.R. Sousa, F.J. Monteiro, “Heparinized nanohydroxyapatite/collagen granules for controlled release of vancomycin”, Journal of Biomedical Materials Research Part A, 103(10), p. 3128 (2015).
Z. Li, K.A. Khor, “Transparent Hydroxyapatite Obtained through Spark Plasma Sintering: Optical and Mechanical Properties” Key Engineering Materials, 631 , p. 51 (2015).
L. Grenho, “Nanohydroxyapatite based antibacterial surfaces to prevent biofilm associated biomaterials bone infection”, PhD Thesis in Biomedical Engineering, Faculdade de Engenharia, Universidade do Porto (2015).
M. Ribeiro, M.A. de Moraes, M.M. Beppu, M.P. Garcia, M.H. Fernandes, F.J. Monteiro, M.P. Ferraz, “Development of silk fibroin/nanohydroxyapatite composite hydrogels for bone tissue engineering” European Polymer Journal, 67, p. 66 (2015).
Z. Doni, A.C. Alves, F. Toptan, L.A. Rocha, M. Buciumeanu, L. Palaghian, F.S. Silva, “Tribocorrosion behaviour of hot pressed CoCrMo-HAP biocomposites” Tribology International, 91, p. 221 (2015).
M. Morra, G. Giavaresi, M. Sartori. A. Ferrari, A. Parrilli, D. Bollati, R.R. Baena, C. Cassinelli, M. Fini, , “Surface chemistry and effects on bone regeneration of a novel biomimetic synthetic bone filler” J Mater Sci: Mater Med 26(4), p. 159 (2015).
F. Munarin, P. Petrini, R. Gentilini, R.S. Pillai, S. Dirè, M.C. Tanzi, V.M. Sglavo,“Micro- and nano-hydroxyapatite as active reinforcement for soft biocomposites”, International Journal of Biological Macromolecules, 72, p. 199 (2015).
L. Grenho, J. Barros, C. Ferreira, V.R. Santos, F.J. Monteiro, M.P. Ferraz, M.E. Cortes, “In vitro antimicrobial activity and biocompatibility of propolis containing nanohydroxyapatite”, Biomedical Materials, 10, p. XXX (2015).
L.R. Rodrigues, M.S. Laranjeira, M.H. Fernandes, F.J. Monteiro, C.A.C. Zavaglia, “HA/TCP scaffolds obtained by sucrose crystal leaching method: Preliminary in vitro Evaluation”, Materials Research, 17(4), p. 811 (2014).
K. Naik, "Sintering of Ceramic Materials Under Electric Field", PhD Thesis in Materials Science Engineering, Department of Industrial Engineering, University of Trento (2014).
M.R. Davarpanah, H.A. Khoshhosn, M. Harati, S.A. Nosrati, M. Zoghi, M. Mazidi, M.G. Maragheh, “Optimization of fundamental parameters in routine production of 90Y-hydroxyapatite for radiosynovectomy”, Journal of Radioanalytical and Nuclear Chemistry, 302(1), p. 69 (2014).
J. Barros, L. Grenho, C.M. Manuel, C. Ferreira, L. F. Melo, O.C. Nunes, F.J. Monteiro, M.P. Ferraz, “Influence of nanohydroxyapatite surface properties on Staphylococcus epidermidis biofilm formation”, Journal of Biomaterials Applications, 28(9), p. 1325 (2014).
O.Y. Alothman, H. Fouad, S. M. Al-Zahrani, A. Eshra, M. F. A. Rez, S. G. Ansari, “Thermal, creep-recovery and viscoelastic behavior of high density polyethylene/hydroxyapatite nano particles for bone substitutes: effects of gamma radiation”, BioMedical Engineering OnLine, 13(1) p. 125 (2014).
L. Grenho, F.J. Monteiro, M.P. Ferraz, “In vitro analysis of the antibacterial effect of nanohydroxyapatite–ZnO composites”, Journal of Biomedical Materials Research Part A, 102(10), p. 3726 (2014).
K. Piedade, “Influence of vancomycin controlled release from heparinized collagen/nanophased hydroxyapatite granules on osteoblast and osteoclast cells”, Master Thesis in Pharmaceutical Biotechnology, Faculty of Pharmacy of Coimbra University, Portugal (2014).
M. V. Torres, “An experimental procedure for Reaction Injection Moulding – RIM – materials formulation design”, PhD Thesis in Chemical and Biological Engineering, Department of Chemical Engineering, University of Porto (2014).
S.D. Hadi, “The Antibacterial Properties and Biocompatibility of Silver and Hydroxyapatite Nanoparticles Coating on Dental Implants”, MSc Thesis, School of Biological Sciences, Faculty of Science and Environment, University of Plymouth, UK (2014).
M.S. Laranjeira, M.H. Fernandes, F.J. Monteiro, “Response of Monocultured and Co-Cultured Human Microvascular Endothelial Cells and Mesenchymal Stem Cells to Macroporous Granules of Nanostructured-Hydroxyapatite Agglomerates”, Journal of Biomedical Nanotechnology, 9(9), p. 1594 (2013).
J. Barros, L. Grenho, C.M. Manuel, C. Ferreira, L. F. Melo, O.C. Nunes , F.J. Monteiro, M.P. Ferraz, “A modular reactor to simulate biofilm development in orthopedic materials”, International Microbiology, 16(3), p. 191 (2013).
O.Y. Alothman, F.N. Almajhdi H. Fouad, “Effect of gamma radiation and accelerated aging on the mechanical and thermal behavior of HDPE/HA nano-composites for bone tissue regeneration”, BioMedical Engineering OnLine, 12(95) (2013).
H. Fouad, R. Elleithy, O.Y. Alothman, “Thermo-mechanical, Wear and Fracture Behavior of High-density Polyethylene/Hydroxyapatite Nano Composite for Biomedical Applications: Effect of Accelerated Ageing”, Journal of Materials Science & Technology, 29(6), p. 573 (2013).
S.C. Rodrigues, C.L. Salgado, A. Sahu, M.P. Garcia, M.H. Fernandes, F.J. Monteiro.“Preparation and characterization of collagen-nanohydroxyapatite biocomposite scaffolds by cryogelation method for bone tissue engineering applications”, Journal of Biomedical Materials Research Part A., 101A(4), p. 1980 (2013).
Woo, K.-D.; Kim, S.-H.; Kang, D.-S.; Kim, D.-G., “Microstructure and Biocompatibility of Ti-Nb-Si-HA Composites Fabricated by Rapid Sintering Using HEMM Powders”, Korean Journal of Materials Research 23(7) p. 353 (2013).
H. G. Palacios, “Inducción de transparencia a cuerpos cerámicos de alto y bajo punto de fusión usando sinterizado convencional y por arco eléctrico SPS”, Master Thesis in Tecnología Avanzada, Centro de Investigación e Innovación Tecnológica, Instituto Politécnico Nacional, México (2013).
X. Wang, Y. Chen, L. Xu, Z. Liu, K.-D. Woo, “Effects of Sn content on the microstructure, mechanical properties and biocompatibility of Ti–Nb–Sn/hydroxyapatite biocomposites synthesized by powder metallurgy”, Materials & Design, 49 p. 511 (2013).
A. Carvalho, A. Pelaez-Vargas, D. Gallego-Perez, L. Grenho, M.H. Fernandes, A.H. De Aza, M.P. Ferraz, D.J. Hansford, F.J. Monteiro, “Micropatterned silica thin films with nanohydroxyapatite micro-aggregates for guided tissue regeneration”, Dental Materials, 28(12), p. 1250 (2012)
L.R. Rodrigues, M.A. Ávila, F.J. Monteiro, C. A. Zavaglia, “Synthesis and characterization of nanocrystalline hydroxyapatite gel and its application as scaffold aggregation”, Materials Research, 15(6) p. 974 (2012)
M.S. Laranjeira, “Reciprocal interaction between human microvascular endothelial cells and mesenchymal stem cells on macroporous granules of nanostructured-hydroxyapatite agglomerates”, PhD Thesis in Biomedical Engineering, Faculdade de Engenharia, Universidade do Porto (2012).
M. Ribeiro, F.J. Monteiro, M.P. Ferraz, “Staphylococcus aureus and Staphylococcus epidermidis adhesion to nanohydroxyapatite in the presence of model proteins”, Biomedical Materials, 7(4) (2012).
L.R. Rodrigues, A.B. Almeida, D.F. Feliciano, C.E. Raposo-Amaral, M.R. Passos-Bueno, B.V. Alamada, M.H. Fernandes, F.J. Monteiro, C. A. Zavaglia, “Inclusão de células mesenquimais em scaffold de fosfato de cálcio para testes in vivo e in vitro”, presented at the “7 Congresso Latino-Americano de Orgãos Artificiais e Biomateriais”, Natal, Brazil (2012).
L. Grenho, F.J. Monteiro, M.P. Ferraz, “Synthesis and antibacterial activity of nanohydroxyapatite/ZnO nanoparticle composite”, European Cells and Materials, 23(S2), p. 17 (2012).
J. Barros, C.M. Manuel, L. Grenho, F.J. Monteiro, L. Melo, O.C. Nunes , M.P. Ferraz, “Design of a modular reactor for biofilm formation studies in biomaterials”, European Cells and Materials, 23(S2), p. 11 (2012).
M. Ribeiro, F.J. Monteiro, M.P. Ferraz, “Influence of surface proteins on Staphylococcus epidermidis adhesion to nanohydroxyapatite as a substrate for bone regeneration”, European Cells and Materials, 23(S2), p. 25 (2012).
L. Grenho, C. Manso, F. J. Monteiro, M. P. Ferraz, “Adhesion of Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa onto nanohydroxyapatite as a bone regeneration material”, Journal of Biomedical Materials Research Part A., 100A(7), p. 1823 (2012).
M.S. Laranjeira, M.H. Fernandes, F.J. Monteiro, “Preparation and in vitro biological studies of porous granules with nanostructured hydroxyapatite”, Third I3S Scientific Retreat, Póvoa de Varzim, Portugal, p. 187 (2012).
C. Yuyong, W. Xiaopeng, X. Lijuan, L. Zhiguang, K. D. Woo, “Tribological behavior study on Ti–Nb–Sn/hydroxyapatite composites in simulated body fluid solution”, Journal of the Mechanical behaviour of Biomedical Materials 10, p. 97 (2012).
L. Grenho, M.P. Ferraz, F.J. Monteiro, “Staphylococci adhesion on nanohydroxyapatite”, Bone, 48(S2), p. 240 (2011).
M.S. Laranjeira, F.J. Monteiro, M.H. Fernandes, “Co-culture of human bone marrow stromal cells (HBMSC) and human dermal microvascular endothelial cells (HDMEC) on nano-hydroxyapatite (HA) surfaces”, Histology and Histopathology, 26(S1) (2011).
S.C. Rodrigues, A. Sahu, C.L. Salgado, F.J. Monteiro, “Preparation of collagen-hydroxyapatite biocomposite scaffolds by cryogelation method for tissue engineering applications”, Histology and Histopathology, 26(S1) (2011).
M. Ribeiro, “Study of nanostructured hydroxyapatite based surfaces to prevent biofilm formation associated to implant infections” MSc Thesis in Biomedical Engineering, Faculdade de Engenharia, Universidade do Porto (2011).
A. Carvalho, “Development of nanostructured and bioactive surfaces onto ceramic substrates”, MSc Thesis in Biomedical Engineering, Faculdade de Engenharia, Universidade do Porto (2011).
M.S. Laranjeira, M.H. Fernandes, F.J. Monteiro, “Preparation and physicochemical/structural characterization of macroporous nanostructured-hydroxyapatite granules”, COLAOB Annals 2010, Rio Grande do Sul, Brasil.
M.S. Laranjeira, M.H. Fernandes, F.J. Monteiro, “Innovative macroporous granules of nanostructured hydroxyapatite agglomerates”, Journal of Biomedical Materials Research Part A, 95A(3), p. 891-900 (2010).
N. Ribeiro, S.R. Sousa, F.J. Monteiro, “Influence of crystallite size of nanophased hydroxyapatite on fibronectin and osteonectin adsorption and on MC3T3-E1 osteoblast adhesion”, Journal of Colloid and Interface Science , 351(2), p. 398-406 (2010).
J. M. Coelho, J. A. Moreira, A. Almeida, F. J. Monteiro, “Synthesis and characterization of HAp nanorods from a cationic surfactant template method”, J Mater Sci: Mater Med, 21(9), p. 2543-2549 (2010).
L. Grenho, M.P. Ferraz, F.J. Monteiro, “Adhesion of different staphylococcus epidermidis strains to nano-hydroxyapatite”, Poster presented at the “I3S Retreat”, Póvoa do Varzim, Portugal (2010).
L. Grenho, “Estudo da adesão bacteriana a biomateriais nanofásicos” MSc Thesis, Universidade Fernando Pessoa (2010).
N. Ribeiro, S. Sousa, F.J. Monteiro, “Human Fibronectin Adsorption onto Nanohydroxiapatite”, Poster presented at the “22nd European Conference of Biomaterials”, Lausanne, Switzerland (2009).
This site uses cookies to improve your usage experience. By continuing to browse, you agree to the use of the same.
You may change the cookie usage settings in your browser settings. Learn more.